Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(1): e0036123, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38047680

RESUMO

Pseudomonas aeruginosa is an opportunistic nosocomial pathogen responsible for a subset of catheter-associated urinary tract infections (CAUTI). In a murine model of P. aeruginosa CAUTI, we previously demonstrated that urea within urine suppresses quorum sensing and induces the Entner-Doudoroff (E-D) pathway. The E-D pathway consists of the genes zwf, pgl, edd, and eda. Zwf and Pgl convert glucose-6-phosphate into 6-phosphogluconate. Edd hydrolyzes 6-phosphogluconate to 2-keto-3-deoxy-6-phosphogluconate (KDPG). Finally, Eda cleaves KDPG to glyceraldehyde-3-phosphate and pyruvate, which enters the citric acid cycle. Here, we generated in-frame E-D mutants in the strain PA14 and assessed their growth phenotypes on chemically defined and complex media. These E-D mutants have a growth defect when grown on glucose or gluconate as the sole carbon source, which is similar to results previously reported for PAO1 mutants lacking E-D genes. RNA-sequencing following short exposure to urine revealed minimal gene regulation differences compared to the wild type. In a murine CAUTI model, virulence testing of E-D mutants revealed that two mutants lacking zwf and pgl showed minor fitness defects. Infection with the ∆pgl strain exhibited a 20% increase in host survival, and the ∆zwf strain displayed decreased colonization of the catheter and kidneys. Consequently, our findings suggest that the E-D pathway in P. aeruginosa is dispensable in this model of CAUTI. IMPORTANCE Prior studies have shown that the Entner-Doudoroff pathway is up-regulated when Pseudomonas aeruginosa is grown in urine. Pseudomonads use the Entner-Doudoroff (E-D) pathway to metabolize glucose instead of glycolysis, which led us to ask whether this pathway is required for urinary tract infection. Here, single-deletion mutants of each gene in the pathway were tested for growth on chemically defined media with single-carbon sources as well as complex media. The effect of each mutant on global gene expression in laboratory media and urine was characterized. The virulence of these mutants in a murine model of catheter-associated urinary tract infection revealed that these mutants had similar levels of colonization indicating that glucose is not the primary carbon source utilized in the urinary tract.


Assuntos
Gluconatos , Infecções por Pseudomonas , Infecções Urinárias , Animais , Camundongos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Cateteres , Carbono
2.
Proc Natl Acad Sci U S A ; 119(50): e2209383119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469780

RESUMO

Healthcare-associated infections are major causes of complications that lead to extended hospital stays and significant medical costs. The use of medical devices, including catheters, increases the risk of bacterial colonization and infection through the presence of a foreign surface. Two outcomes are observed for catheterized patients: catheter-associated asymptomatic bacteriuria and catheter-associated urinary tract infection (CAUTI). However, the relationship between these two events remains unclear. To understand this relationship, we studied a murine model of Pseudomonas aeruginosa CAUTI. In this model, we also observe two outcomes in infected animals: acute symptoms that is associated with CAUTI and chronic colonization that is associated with asymptomatic bacteriuria. The timing of the acute outcome takes place in the first week of infection, whereas chronic colonization occurs in the second week of infection. We further showed that mutants lacking genes encoding type III secretion system (T3SS), T3SS effector proteins, T3SS injection pore, or T3SS transcriptional activation all fail to cause acute symptoms of CAUTI. Nonetheless, all mutants defective for T3SS colonized the catheter and bladders at levels similar to the parental strain. In contrast, through induction of the T3SS master regulator ExsA, all infected animals showed acute phenotypes with bacteremia. Our results demonstrated that the acute symptoms, which are analogous to CAUTI, and chronic colonization, which is analogous to asymptomatic bacteriuria, are independent events that require distinct bacterial virulence factors. Experimental delineation of asymptomatic bacteriuria and CAUTI informs different strategies for the treatment and intervention of device-associated infections.


Assuntos
Bacteriúria , Infecções Urinárias , Camundongos , Animais , Pseudomonas aeruginosa/genética , Bacteriúria/complicações , Infecções Urinárias/microbiologia , Sistemas de Secreção Tipo III , Cateteres/efeitos adversos
3.
J Aquat Anim Health ; 33(3): 178-189, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34121235

RESUMO

One of the major goals in aquaculture is to protect fish against infectious diseases as disease outbreaks could lead to economic losses if not controlled. Antimicrobial peptides (AMPs), a class of highly conserved peptides known to possess direct antimicrobial activities against invading pathogens, were evaluated for their ability to protect Channel Catfish Ictalurus punctatus and hybrid catfish (female Channel Catfish × male Blue Catfish I. furcatus) against infection caused by the fish pathogen Aeromonas hydrophila ML09-119. To identify effective peptides, the minimum inhibitory concentrations against bacterial pathogens Edwardsiella ictaluri S97-773, Edwardsiella piscicida E22-10, A. hydrophila ML09-119, Aeromonas veronii 03X03876, and Flavobacterium columnare GL-001 were determined in vitro. In general and overall, cathelicidins derived from alligator and sea snake exhibited more potent and rapid antimicrobial activities against the tested catfish pathogens as compared to cecropin and pleurocidin AMPs and ampicillin, the antibiotic control. When the peptides (2.5 µg of peptide/g of fish) were injected into fish and simultaneously challenged with A. hydrophila through immersion, increased survival rates in Channel Catfish and hybrid catfish were observed in both cathelicidin (alligator and sea snake) treatments as compared to other peptides and the infected control (P < 0.001) with alligator cathelicidin being the overall best treatment. Bacterial numbers in the kidney and liver of Channel Catfish and hybrid catfish also decreased (P < 0.05) for cathelicidin-injected groups at 24 and 48 h after challenge infection. These results show the potential of cathelicidin to protect catfish against bacterial infections and suggest that an approach overexpressing the peptide in transgenic fish, which is the long-term goal of this research program, may provide a method of decreasing bacterial disease problems in catfish as delivering the peptides via individual injection or feeding would not be economically feasible.


Assuntos
Peixes-Gato , Doenças dos Peixes , Ictaluridae , Animais , Peptídeos Catiônicos Antimicrobianos , Edwardsiella , Feminino , Doenças dos Peixes/prevenção & controle , Flavobacterium , Masculino , Catelicidinas
4.
Cryobiology ; 97: 46-52, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058900

RESUMO

Sustainability of channel catfish, Ictalurus punctatus ♀ × blue catfish, Ictalurus furcatus ♂ hybrid aquaculture relies on new innovative technologies to maximize fry output. Transplanting spermatogonial stem cells (SSCs) from blue catfish into channel catfish hosts has the potential to greatly increase gamete availability and improve hybrid catfish fry outputs. Cryopreservation would make these cells readily accessible for xenogenesis, but a freezing protocol for blue catfish testicular tissues has not yet been fully developed. Therefore, the objectives of this experiment were to identify the best permeating [dimethyl sulfoxide (DMSO), ethylene glycol (EG), glycerol, methanol] and non-permeating (lactose or trehalose with egg yolk or BSA) cryoprotectants, their optimal concentrations, and the best freezing rates (-0.5, -1.0, -5.0, -10 °C/min until -80 °C) that yield the highest number of viable type A spermatogonia cells. Results showed that all of these factors had significant impacts on post-thaw cell production and viability. DMSO was the most efficient permeating cryoprotectant at a concentration of 1.0 M. The optimal concentration of each cryoprotectant depended on the specific cryoprotectant due to interactions between the two factors. Of the non-permeating cryoprotectants, 0.2 M lactose with egg yolk consistently improved type A spermatogonia production and viability beyond that of the 1.0 M DMSO control. The overall best freezing rate was consistent at -1 °C/min, but similar results were obtained using -0.5 °C/min. Overall, we recommend cryopreserving blue catfish testicular tissues in 1.0 M DMSO with 0.2 M lactose and egg yolk at a rate of either -0.5 or -1 °C/min to achieve the best cryopreservation outcomes. Continued development of cryopreservation protocols for blue catfish and other species will make spermatogonia available for xenogenic applications and genetic improvement programs.


Assuntos
Peixes-Gato , Ictaluridae , Preservação do Sêmen , Animais , Criopreservação/métodos , Crioprotetores/farmacologia , Dimetil Sulfóxido , Masculino , Preservação do Sêmen/veterinária , Espermatogônias , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...